Generalized Fractional-Order Bernoulli Functions via Riemann-Liouville Operator and Their Applications in the Evaluation of Dirichlet Series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier series of higher-order Bernoulli functions and their applications

In this paper, we study the Fourier series related to higher-order Bernoulli functions and give new identities for higher-order Bernoulli functions which are derived from the Fourier series of them.

متن کامل

On Some Results in the Light of Generalized Relative Ritt Order of Entire Functions Represented by Vector Valued Dirichlet Series

In this paper, we study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of generalized relative Ritt order and generalized relative Ritt lower order.

متن کامل

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

Relative order and type of entire functions represented by Banach valued Dirichlet series in two variables

In this paper, we introduce the idea of relative order and type of entire functions represented by Banach valued Dirichlet series of two complex variables to generalize some earlier results. Proving some preliminary theorems on the relative order, we obtain sum and product theorems and we show that the relative order of an entire function represented by Dirichlet series is the same as that of i...

متن کامل

Riemann-Liouville integrals of fractional order and extended KP hierarchy

An attempt is given to formulate the extensions of the KP hierarchy by introducing fractional order pseudo-differential operators. In the case of the extension with the half-order pseudo-differential operators, a system analogous to the supersymmetric extensions of the KP hierarchy is obtained. Unlike the supersymmetric extensions, no Grassmannian variable appears in the hierarchy considered he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2018

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2018/4875916